____ **C.U.SHAH UNIVERSITY Summer Examination-2018**

Subject Name : Mathematics-I

Subject Code	: 4SC01MTC1	Branch : B.Sc. (All)		
Semester : 1 Instructions:	Date : 23/03/2018	Time : 02:30 To 05:30	Marks : 70	

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1	Attempt the following questions:	(14)
a)	What is difference between matrix and determinant?	(1)
b)	Write taylor's series of $log(1+x)$ at $x=0$.	(1)
c)	True/false : Machlaurin's series is particular case of Taylor's series .	(1)
d)	Can you apply Roll's theorem for the function $f(x) = x + 2 $ in [-3, 4]? Give the reason of your answer?	(1)
e)	True/false : If $detA = 9$ then the matrix is invertible.	(1)
f)	If A is 2 x 3 matrix and B is 3 x 8 matrix then What is order of B.A?	(1)
g)	True/false :Every skew- symmetric metrix must have all diagonal entry zero.	(1)
h)	What is transpose of matrix?	(1)
i)	What is difference between identity matrix and null matrix?	(1)
j)	Define: Differential equation?	(1)
k)	Give an example of exact differential equation.	(1)
D)	True/false : Every invertible matrix must have one none zero raws.	(1)
m)	Write an example of partial differential equation with order 3 and degree 2.	(1)
n)	Solve : $xydy + (x^2 + x)dx = 0.$	(1)

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions (14)a) Define : Orthogonal matrix . (2)

b) Find inverse of
$$\begin{bmatrix} 6 & -1 \\ 2 & 1 \end{bmatrix}$$
. (4)

c) If
$$A = \begin{bmatrix} -1 & -2 & 2 \\ -2 & 2 & 3 \\ -1 & 1 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} -2 & -3 & 4 \\ -2 & -5 & 5 \\ -3 & 8 & 1 \end{bmatrix}$, then find (i) A^2 (ii) B^2 (8)

Is
$$A^2 - 9B^2 = (A + 3B)(A - 3B)$$
?

Page 1 || 3

Q-3	a)	Attempt all questions What is raw echnol form of the matrix ?	(14) (2)
	b)	Discuss the consistency problem for the system x + y + z = -1 2x+y+2z = -2 x + y + 3z = -3.	(4)
	c)	Find the rank by (1) Reduced raw echnol form (2) Normal form . for the matrix	(8)
		$A = \begin{bmatrix} 1 & -2 & 3 & 5 & 4 \\ 3 & 4 & 5 & 6 & 4 \\ -1 & 4 & -8 & 2 & 5 \end{bmatrix}$	
Q-4	a)	Attempt all questions Define: Characteristic roots of the matrix .	(14) (2)
	b)	Find the Eigen value of	(4)
		$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 7 & 7 \\ 0 & 0 & -4 \end{bmatrix}.$	
	c)	Write the charectristic equation for the following matrix and verify Caley – Hamilton theorem for it .	(8)

$$\mathbf{A} = \begin{bmatrix} -1 & 2 & 3 \\ 2 & 7 & -8 \\ 5 & 1 & -1 \end{bmatrix}.$$

Q-5		Attempt all questions	(14)
	a)	Define :Degree of differential equation.	(2)
	b)	Solve: $(9x+3y-6) dx + (3x+11y+4) dy=0$.	(4)
	c)	What is linear differential equation in x? Solve: $\frac{dy}{dx} + \frac{y}{x} = \sin x$; where $y(\pi) = 1$.	(8)
Q-6		Attempt all questions	(14)
	a)	State and prove Roll's theorem.	(7)
	b)	State Cauchy's mean value theorem and verify it for the functions $f(x)=x^2$,	(7)
		$g(x) = x x^4$, where $x \in [1, 2]$.	
Q-7		Attempt all questions	(14)
		Find order and degree of the following ODE.	(2)
		$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^7 + \frac{xy}{\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^3} + 1 = 0 \; .$	

Page 2 || 3

b) Evaluate (4) $x \xrightarrow{\text{lim}} 0 + (\text{arc sinx})^{2x}$. Solve : (8) c) (1) $\frac{dy}{dx} - \frac{dx}{dy} = \frac{x}{y} - \frac{y}{x}$ (2) $y = 2px + y^2p^3$. Attempt all questions (14)**a**) What is Cartesian coordinates for the points $(-2, -45^{\circ})$? (2) Evaluate the following : b) (6) 12.

(1)
$$x \xrightarrow{\lim \infty} \infty (e^{x+e^{-x}} - e^x)$$
.
(2) $x \xrightarrow{\lim \pi} 2 (sinx)^{tanx}$.

Q-8

c) Locate the following points in respective coordinates. (6)

(1) $x = 3\cos 60^{0}$, $y=3\sin 60^{0}$. (2) (6,135⁰). (3) (- π , e).

Page 3 || 3